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Overview 

• Terra Harvest is a framework for developing interoperable UGS controllers 

• Asset plugins (data producers) post observations (lines of bearing, images, etc) 

to a persistent store (database) using a common lexicon (Java classes 

generated from a set of XML schemas) 

• Controllers need a way to “wire” different assets, communications devices, 

algorithms, and the like together to perform useful functions 

– “Mission logic” / “Mission programming” / “Trigger rules” / etc 

– How to do this? 
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Requirements 

1. Must* provide an equivalent level of functionality to currently available UGS 

systems 

2. Must be extensible to support new types and classes of devices, algorithms, etc. 

without requiring extensive re-engineering 

3. Must perform well in a size, weight, and power constrained embedded 

environment 

 

4. Should* be capable of accommodating missions of arbitrary complexity 

5. Should allow for the creation of GUI tools to develop missions 

6. Should be able to identify unsatisfiable/inconsistent/redundant/contradictory 

mission logic to warn users of potential programming errors 

* See IETF RFC 2119 
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Possible Approaches 

• Hardcoded Rules Engine 

• SensorML Process Chains 

• Web Ontology Language (OWL) / Semantic Web Rules Language (SWRL) 

• SQL Triggers 

• Scripting Languages 

 

• Probably others… 
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• Approach used by most current UGS 

systems 

• Wires predefined actions together 

• Easy to build GUIs, easy for users 

• Not extensible 

 

Hardcoded Rules Engine 
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SensorML Process Chains 

• OGC standard for describing (among other things) sensor process models 

• Can be used to describe UGS missions, but it is a poor fit 

– SensorML describes a sequence of operations that produces a result (e.g. 

for a remote sensing system – capture image, scale it, apply a processing 

algorithm, then save it) 

– UGS missions need to describe a set of operations to take in response to 

events, which is awkward in SensorML 

• Difficult to model Boolean “or” conditions 

• Does not convey semantic information well 

– Depends on external, non-standardized ontologies 
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OWL and SWRL 

• W3C recommendations for 

describing ontologies (OWL) and 

rules that infer knowledge from 

ontologies (SWRL) 

• Define ontologies for sensor system 

components and use rules to 

describe actions to take in response 

to events 

• Easily extensible 

• Existing open source and 

commercial processing engines and 

GUI tools 

• Can identify inconsistent/impossible 

missions 

• Way too slow! 

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EC10-M04"> 

  <rdf:type rdf:resource="&UGS;Mission"/> 

  <UGS:hasMissionStartTime rdf:datatype="&xsd;dateTime">2010-06-

25T14:06:01</UGS:hasMissionStartTime> 

  <UGS:hasRCGSID rdf:datatype="&xsd;integer">297</UGS:hasRCGSID> 

  <UGS:hasComments rdf:datatype="&xsd;string">CAST1, CAST2,  PHX D1.  CAST 

detections sends detection message and puts D1 in motion detection. Camera 

detection takes picture and sends thumbnail. RCGS SOH one per 

hour.</UGS:hasComments> 

  <UGS:hasName rdf:datatype="&xsd;string">EC10-M04</UGS:hasName> 

  <UGS:hasNumber rdf:datatype="&xsd;string">EC10-M04</UGS:hasNumber> 

  <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP1"/> 

  <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP2"/> 

  <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP3"/> 

  <UGS:hasTransport rdf:resource="http://th-owl/EC10-M04.owl#Iridium"/> 

  <UGS:hasCoordinates rdf:resource="http://th-owl/EC10-

M04.owl#MissionCoordinates"/> 

  <UGS:hasRCGSMode rdf:resource="http://th-owl/EC10-M04.owl#MissionMode"/> 

  <UGS:hasAsset rdf:resource="http://th-owl/EC10-M04.owl#PhoenixDay1"/> 

  <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#TIP1"/> 

</owl:NamedIndividual> 

<!-- http://th-owl/EC10-M04.owl#EIP1 --> 

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EIP1"> 

  <rdf:type rdf:resource="&UGS;Procedure"/> 

  <UGS:hasNumber rdf:datatype="&xsd;string">1</UGS:hasNumber> 

  <UGS:hasAction rdf:resource="http://th-owl/EC10-M04.owl#Action2"/> 

  <UGS:hasAction rdf:resource="http://th-owl/EC10-M04.owl#Action3"/> 

  <UGS:hasCondition rdf:resource="http://th-owl/EC10-

M04.owl#EIP1Condition"/> 

</owl:NamedIndividual> 

<!-- http://th-owl/EC10-M04.owl#EIP1Condition --> 

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EIP1Condition"> 

  <rdf:type rdf:resource="&UGS;Condition"/> 

  <UGS:hasSensor rdf:resource="http://th-owl/EC10-M04.owl#CAST1"/> 

  <UGS:hasTripType rdf:resource="http://th-owl/EC10-

M04.owl#EIP1SensorTripType"/> 

</owl:NamedIndividual> 

<!-- http://th-owl/EC10-M04.owl#EIP1SensorTripType --> 

<owl:NamedIndividual rdf:about="http://th-owl/EC10-

M04.owl#EIP1SensorTripType"> 

  <rdf:type rdf:resource="&UGS;SensorTripTypeAny"/> 

</owl:NamedIndividual> 
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• Store incoming events as rows in a 

database (one column for each 

possible field in the message) 

• Create insert/update triggers in the 

database schema 

• Triggers call external user defined 

functions to execute actions 

• Excellent performance 

• Poor extensibility (requires database 

schema changes) 

• Query planners can result in 

unexpected behavior due to UDF side 

effects 

SELECT CueOneCamera("Cam01", 

   new.snsrLat, new.snsrLon,  

   new.snsrAlt, 1),  

   GrabVideoDelay(700,"Cam01")  

WHERE new.eventID LIKE  

   "TH.CAST1%"  

    AND new.snsrLat NOT NULL  

    AND new.snsrLon NOT NULL; 

 

SQL Triggers 
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Scripting Languages 

• Expose UGS system components to a scripting language 

• Write scripts to represent mission programs 

• Python 

– Currently used within the intelligence community 

– Interpreter (Jython) is too heavy, performs poorly on embedded platforms 

• JavaScript 

– “Language of the web” 

– Interpreter (Mozilla Rhino) built in to the standard Java runtime 

– Fast performance 

– Approach chosen for TerraHarvest 
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JavaScript Mission Engine 

• Rhino exposes Java APIs to JavaScript programs 

– Scripts can leverage any existing Terra Harvest functionality 

• Terra Harvest framework (and the JRE) provides: 

– Asset (device) directory 

– Asset command and control 

– Posting and retrieving asset observations 

– Sending and receiving messages over custom communications channels 

(Java provides IP support) 

• MissionProgramManager provides: 

– Persistent storage of missions 

– Execution of missions with runtime-configurable parameters 

– Predefined JavaScript variables for easy access to core framework services 

– Utility libraries for event handlers and threads 
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Example Mission 

// trigAsset and camAsset are parameters set by the configuration GUI. 

// trigAsset is the name of the asset that will be used as a trigger sensor. 

// camAsset is the name of the camera to use to take a picture. 

importPackage(org.osgi.service.event); 

importPackage(Packages.mil.dod.th.core.observation.types) 

importPackage(Packages.mil.dod.th.core.asset.types) 

importPackage(Packages.mil.dod.th.core.asset.capability.commands) 

takePictureObj = 

{ 

    // Implement the Runnable interface, so this can be run as a thread. 

    run: function () { 

        // Get a reference to the camera object from the asset directory. 

        // ads is a system-defined variable that points to the  

        // AssetDirectoryService. 

        cam = ads.getAssetByName(camAsset); 

  

        // Tell the camera asset plugin to take the picture 

        cam.captureData(true); 

    } 

} 
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Example Mission 

eventObj = 

{ 

    // Implement the OSGi EventHandler interface to handle events from the  

    // observation store. 

    handleEvent: function (event) { 

        // Get the sensor report (observation) data from the event object. 

        observation = event.getProperty("asset.observation"); 

  

        // Do some checks on the report to determine whether or not we want  

        // to take a picture. 

        if (observation.isSetDetection()) { 

            sensings = observation.getDetection().getSensings(); 

            if (sensings != null &&  

             sensings.get(0).getModalityType().equals(SensingModalityEnum.PIR)) { 

  

                ls.info("Trip sensor has triggered the camera", []); 

                // Start the background thread to take the picture. 

                r = new java.lang.Runnable(takePictureObj); 

                t = new java.lang.Thread(r); 

                t.start(); 

            } 

        } 

    } 

}; 
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Example Mission 

  

handler = new EventHandler(eventObj); 

  

// Register the event handler with OSGi so we can get sensor reports. 

// The system posts events to this topic when sensors produce data. 

strTopic = "mil/dod/th/core/asset/Asset/MADE_OBSERVATION"; 

// Set an event filter so we only get reports from the asset we are 

// interested in. 

strFilter = "(obj.name=" + trigAsset + ")"; 

  

// ehh is a system-defined variable that points to the EventHandlerHelper, 

// which scripts can use to easily register event handlers with OSGi. 

ehh.registerHandler(handler, strTopic, strFilter); // registers handler with OSGi 
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Future Work 

• Provide more helper functions and utility libraries to make initialization easier 

• Add functions to stop running missions 

• Replace the bundled Rhino (modified by Oracle) with the standard version from 

Mozilla 

– Allows scripts to extend Java classes 

• Develop a mission library GUI 

– “App store” for predefined missions 

– User can easily select and customize missions when deploying sensors 

– Knowledgeable users/developers can create new missions and add them to 

the library 
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Questions? 


