
U.S. Army Research, Development and Engineering Command

Approved for Public Release, Distribution Unlimited

Jesse Kovach

Battlefield Information Processing Branch, ARL

24 April 2012

Terra Harvest Mission Programming Approach

Approved for Public Release, Distribution Unlimited

Overview

• Terra Harvest is a framework for developing interoperable UGS controllers

• Asset plugins (data producers) post observations (lines of bearing, images, etc)

to a persistent store (database) using a common lexicon (Java classes

generated from a set of XML schemas)

• Controllers need a way to “wire” different assets, communications devices,

algorithms, and the like together to perform useful functions

– “Mission logic” / “Mission programming” / “Trigger rules” / etc

– How to do this?

Approved for Public Release, Distribution Unlimited

Requirements

1. Must* provide an equivalent level of functionality to currently available UGS

systems

2. Must be extensible to support new types and classes of devices, algorithms, etc.

without requiring extensive re-engineering

3. Must perform well in a size, weight, and power constrained embedded

environment

4. Should* be capable of accommodating missions of arbitrary complexity

5. Should allow for the creation of GUI tools to develop missions

6. Should be able to identify unsatisfiable/inconsistent/redundant/contradictory

mission logic to warn users of potential programming errors

* See IETF RFC 2119

Approved for Public Release, Distribution Unlimited

Possible Approaches

• Hardcoded Rules Engine

• SensorML Process Chains

• Web Ontology Language (OWL) / Semantic Web Rules Language (SWRL)

• SQL Triggers

• Scripting Languages

• Probably others…

Approved for Public Release, Distribution Unlimited

• Approach used by most current UGS

systems

• Wires predefined actions together

• Easy to build GUIs, easy for users

• Not extensible

Hardcoded Rules Engine

Approved for Public Release, Distribution Unlimited

SensorML Process Chains

• OGC standard for describing (among other things) sensor process models

• Can be used to describe UGS missions, but it is a poor fit

– SensorML describes a sequence of operations that produces a result (e.g.

for a remote sensing system – capture image, scale it, apply a processing

algorithm, then save it)

– UGS missions need to describe a set of operations to take in response to

events, which is awkward in SensorML

• Difficult to model Boolean “or” conditions

• Does not convey semantic information well

– Depends on external, non-standardized ontologies

Approved for Public Release, Distribution Unlimited

OWL and SWRL

• W3C recommendations for

describing ontologies (OWL) and

rules that infer knowledge from

ontologies (SWRL)

• Define ontologies for sensor system

components and use rules to

describe actions to take in response

to events

• Easily extensible

• Existing open source and

commercial processing engines and

GUI tools

• Can identify inconsistent/impossible

missions

• Way too slow!

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EC10-M04">

 <rdf:type rdf:resource="&UGS;Mission"/>

 <UGS:hasMissionStartTime rdf:datatype="&xsd;dateTime">2010-06-

25T14:06:01</UGS:hasMissionStartTime>

 <UGS:hasRCGSID rdf:datatype="&xsd;integer">297</UGS:hasRCGSID>

 <UGS:hasComments rdf:datatype="&xsd;string">CAST1, CAST2, PHX D1. CAST

detections sends detection message and puts D1 in motion detection. Camera

detection takes picture and sends thumbnail. RCGS SOH one per

hour.</UGS:hasComments>

 <UGS:hasName rdf:datatype="&xsd;string">EC10-M04</UGS:hasName>

 <UGS:hasNumber rdf:datatype="&xsd;string">EC10-M04</UGS:hasNumber>

 <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP1"/>

 <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP2"/>

 <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#EIP3"/>

 <UGS:hasTransport rdf:resource="http://th-owl/EC10-M04.owl#Iridium"/>

 <UGS:hasCoordinates rdf:resource="http://th-owl/EC10-

M04.owl#MissionCoordinates"/>

 <UGS:hasRCGSMode rdf:resource="http://th-owl/EC10-M04.owl#MissionMode"/>

 <UGS:hasAsset rdf:resource="http://th-owl/EC10-M04.owl#PhoenixDay1"/>

 <UGS:hasProcedure rdf:resource="http://th-owl/EC10-M04.owl#TIP1"/>

</owl:NamedIndividual>

<!-- http://th-owl/EC10-M04.owl#EIP1 -->

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EIP1">

 <rdf:type rdf:resource="&UGS;Procedure"/>

 <UGS:hasNumber rdf:datatype="&xsd;string">1</UGS:hasNumber>

 <UGS:hasAction rdf:resource="http://th-owl/EC10-M04.owl#Action2"/>

 <UGS:hasAction rdf:resource="http://th-owl/EC10-M04.owl#Action3"/>

 <UGS:hasCondition rdf:resource="http://th-owl/EC10-

M04.owl#EIP1Condition"/>

</owl:NamedIndividual>

<!-- http://th-owl/EC10-M04.owl#EIP1Condition -->

<owl:NamedIndividual rdf:about="http://th-owl/EC10-M04.owl#EIP1Condition">

 <rdf:type rdf:resource="&UGS;Condition"/>

 <UGS:hasSensor rdf:resource="http://th-owl/EC10-M04.owl#CAST1"/>

 <UGS:hasTripType rdf:resource="http://th-owl/EC10-

M04.owl#EIP1SensorTripType"/>

</owl:NamedIndividual>

<!-- http://th-owl/EC10-M04.owl#EIP1SensorTripType -->

<owl:NamedIndividual rdf:about="http://th-owl/EC10-

M04.owl#EIP1SensorTripType">

 <rdf:type rdf:resource="&UGS;SensorTripTypeAny"/>

</owl:NamedIndividual>

Approved for Public Release, Distribution Unlimited

• Store incoming events as rows in a

database (one column for each

possible field in the message)

• Create insert/update triggers in the

database schema

• Triggers call external user defined

functions to execute actions

• Excellent performance

• Poor extensibility (requires database

schema changes)

• Query planners can result in

unexpected behavior due to UDF side

effects

SELECT CueOneCamera("Cam01",

 new.snsrLat, new.snsrLon,

 new.snsrAlt, 1),

 GrabVideoDelay(700,"Cam01")

WHERE new.eventID LIKE

 "TH.CAST1%"

 AND new.snsrLat NOT NULL

 AND new.snsrLon NOT NULL;

SQL Triggers

Approved for Public Release, Distribution Unlimited

Scripting Languages

• Expose UGS system components to a scripting language

• Write scripts to represent mission programs

• Python

– Currently used within the intelligence community

– Interpreter (Jython) is too heavy, performs poorly on embedded platforms

• JavaScript

– “Language of the web”

– Interpreter (Mozilla Rhino) built in to the standard Java runtime

– Fast performance

– Approach chosen for TerraHarvest

Approved for Public Release, Distribution Unlimited

JavaScript Mission Engine

• Rhino exposes Java APIs to JavaScript programs

– Scripts can leverage any existing Terra Harvest functionality

• Terra Harvest framework (and the JRE) provides:

– Asset (device) directory

– Asset command and control

– Posting and retrieving asset observations

– Sending and receiving messages over custom communications channels

(Java provides IP support)

• MissionProgramManager provides:

– Persistent storage of missions

– Execution of missions with runtime-configurable parameters

– Predefined JavaScript variables for easy access to core framework services

– Utility libraries for event handlers and threads

Approved for Public Release, Distribution Unlimited

Example Mission

// trigAsset and camAsset are parameters set by the configuration GUI.

// trigAsset is the name of the asset that will be used as a trigger sensor.

// camAsset is the name of the camera to use to take a picture.

importPackage(org.osgi.service.event);

importPackage(Packages.mil.dod.th.core.observation.types)

importPackage(Packages.mil.dod.th.core.asset.types)

importPackage(Packages.mil.dod.th.core.asset.capability.commands)

takePictureObj =

{

 // Implement the Runnable interface, so this can be run as a thread.

 run: function () {

 // Get a reference to the camera object from the asset directory.

 // ads is a system-defined variable that points to the

 // AssetDirectoryService.

 cam = ads.getAssetByName(camAsset);

 // Tell the camera asset plugin to take the picture

 cam.captureData(true);

 }

}

Approved for Public Release, Distribution Unlimited

Example Mission

eventObj =

{

 // Implement the OSGi EventHandler interface to handle events from the

 // observation store.

 handleEvent: function (event) {

 // Get the sensor report (observation) data from the event object.

 observation = event.getProperty("asset.observation");

 // Do some checks on the report to determine whether or not we want

 // to take a picture.

 if (observation.isSetDetection()) {

 sensings = observation.getDetection().getSensings();

 if (sensings != null &&

 sensings.get(0).getModalityType().equals(SensingModalityEnum.PIR)) {

 ls.info("Trip sensor has triggered the camera", []);

 // Start the background thread to take the picture.

 r = new java.lang.Runnable(takePictureObj);

 t = new java.lang.Thread(r);

 t.start();

 }

 }

 }

};

Approved for Public Release, Distribution Unlimited

Example Mission

handler = new EventHandler(eventObj);

// Register the event handler with OSGi so we can get sensor reports.

// The system posts events to this topic when sensors produce data.

strTopic = "mil/dod/th/core/asset/Asset/MADE_OBSERVATION";

// Set an event filter so we only get reports from the asset we are

// interested in.

strFilter = "(obj.name=" + trigAsset + ")";

// ehh is a system-defined variable that points to the EventHandlerHelper,

// which scripts can use to easily register event handlers with OSGi.

ehh.registerHandler(handler, strTopic, strFilter); // registers handler with OSGi

Approved for Public Release, Distribution Unlimited

Future Work

• Provide more helper functions and utility libraries to make initialization easier

• Add functions to stop running missions

• Replace the bundled Rhino (modified by Oracle) with the standard version from

Mozilla

– Allows scripts to extend Java classes

• Develop a mission library GUI

– “App store” for predefined missions

– User can easily select and customize missions when deploying sensors

– Knowledgeable users/developers can create new missions and add them to

the library

Approved for Public Release, Distribution Unlimited

Questions?

