

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JANUARY 2010
2. REPORT TYPE

Conference Paper Postprint
3. DATES COVERED (From - To)

February 2006 – December 2007
4. TITLE AND SUBTITLE

IMPROVING TIMELINESS AND RELIABILITY OF DATA DELIVERY IN
TACTICAL WIRELESS ENVIRONMENTS WITH MOCKETS
COMMUNICATIONS LIBRARY

5a. CONTRACT NUMBER
FA8750-06-2-0064

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
N/A

6. AUTHOR(S)

Erika Benvegnu, Niranjan Suri, James Hanna, Vaughn Combs, Robert
Winkler, and Jesse Kovach

5d. PROJECT NUMBER
ICED

5e. TASK NUMBER
06

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

 AFRL/RISE Florida Institute for Human and Machine Cognition
 525 Brooks Road 40 South Alcaniz Street
 Rome, NY 13441-4505 Pensacola, FL 32502-6008

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2010-2

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited PA# 88ABW-2009-5306 Date Cleared: January 4, 2010

13. SUPPLEMENTARY NOTES
© 2009 MILCOM. This paper was published in the Proceedings of the 2009 MILCOM The Challenge of Convergence, World
Trade Center, Boston, MA; October 18-21, 2009. This work is copyrighted. One or more of the authors is a U.S. Government
employee working within the scope of their Government job; therefore, the U.S Government is joint owner of the work and has the
right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
Network centric warfare relies on the timely and reliable delivery of data to disparate cooperating nodes in tactical networking
environments. Given the limited bandwidth available and the unreliability of network links, data often accumulates in application
and/or network queues, resulting in increased latency in the delivery of the data. The Mockets communications library addresses this
problem via dynamic message replacement. The message replacement functionality of Mockets allows the system to drop all but the
most recent message within a specific message flow by removing older, outdated messages from the queues. This paper describes
and evaluates, in the context of the U.S. Air Force's Joint Battlespace Infosphere (JBI) system, the timeliness of end-to-end delivery
of data using the Mockets library. In addition to dynamic message replacement, other capabilities in the Mockets library include
options for reliable vs. unreliable and sequenced vs. unsequenced delivery of data, detailed statistics and feedback regarding
the connection, and assignment and dynamic adjustment of priorities of messages. This paper provides a qualitative analysis of these
different capabilities and their suitability to address the transport requirements in JBI. It also provides a quantitative comparison of
Mockets with SCTP and SCPS-TP, which are similar technologies with existing available candidate implementations. Our results
show that the Mockets library with the message replacement significantly outperforms these other transport protocols.
15. SUBJECT TERMS
Mockets, Publish/Subscribe Middleware, Information Management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

9

19a. NAME OF RESPONSIBLE PERSON
James Hanna

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

1 of 8

IMPROVING TIMELINESS AND RELIABILITY OF DATA DELIVERY IN TACTICAL WIRELESS
ENVIRONMENTS WITH MOCKETS COMMUNICATIONS LIBRARY

Erika Benvegnù, Niranjan Suri
Florida Institute for Human &

Machine Cognition, Pensacola, FL,
USA

James Hanna, Vaughn Combs
U.S. Air Force Research

Laboratory, Rome, New York,
USA

Robert Winkler, Jesse Kovach
U.S. Army Research Laboratory,

Adelphi, Maryland, USA

ABSTRACT

Network centric warfare relies on the timely and
reliable delivery of data to disparate cooperating nodes in
tactical networking environments. Given the limited
bandwidth available and the unreliability of network links,
data often accumulates in application and/or network
queues, resulting in increased latency in the delivery of the
data. The Mockets communications library addresses this
problem via dynamic message replacement. The message
replacement functionality of Mockets allows the system to
drop all but the most recent message within a specific
message flow by removing older, outdated messages from
the queues. This paper describes and evaluates, in the
context of the U.S. Air Force's Joint Battlespace
Infosphere (JBI) system, the timeliness of end-to-end
delivery of data using the Mockets library.

In addition to dynamic message replacement, other
capabilities in the Mockets library include options for
reliable vs. unreliable and sequenced vs. unsequenced
delivery of data, detailed statistics and feedback regarding
the connection, and assignment and dynamic adjustment of
priorities of messages. This paper provides a qualitative
analysis of these different capabilities and their suitability
to address the transport requirements in JBI. It also
provides a quantitative comparison of Mockets with SCTP
and SCPS-TP, which are similar technologies with
existing available candidate implementations. Our results
show that the Mockets library with the message
replacement significantly outperforms these other
transport protocols.

INTRODUCTION

Tactical networking environments are often
characterized by limited bandwidth and unreliable
connectivity due to their wireless ad-hoc nature.
Nevertheless these environments must still support
applications with potentially massive data exchange
requirements.

Our analysis focuses on the context of the U.S. Air
Force’s Joint Battlespace Infosphere (JBI) in order to find
a transport protocol that supports transmission and
reception of data between clients and servers and provides

advanced functionalities to be exploited by the infosphere.
In this analysis the main aim of the transport protocol is to
maximize the timeliness of the delivery of information, as
well as providing advanced capabilities such as supporting
different types of flow, integrating with other components,
and controlling the communication in a flexible manner.

In the JBI system, several applications have timing
constraints on the delivery of data. Information may
become stale after some amount of time. Additionally,
some old messages become irrelevant when a newer
message becomes available. Message replacement allows
newer information to be delivered quickly, by removing
old messages from the transmission queue that are either
waiting to be sent or are awaiting retransmission if not
acknowledged.

Our evaluation consisted of identifying the most
suitable transport technologies to support JBI applications
with timeliness constraints followed by a quantitative
comparison of those technologies.

In our quantitative analysis we have considered
several types of applications in different network
environments. A series of tests has been performed
analyzing applications involving both single and multiple
information producers and also including several different
types of information with different delivery requirements.
During the experimentation we simulated two different
environments: a low bandwidth channel and a channel
with fluctuating bandwidth.

JBI AND THE REQUIREMENTS OF THIS
CONTEXT

JBI is an information management architecture that
supports efficient publish, subscribe, and query of
information [1] [1]. JBI was initially targeted towards
enterprise networks such as those present at Air
Operations Centers and other upper echelons, but has since
been extended to support airborne networking
environments. In the context of enterprise networks, JBI
uses Java Remote Method Invocation (RMI) and the Java
Messaging Service as transport protocols. However, the
airborne networking environment introduces low-

1

POSTPRINT

2 of 8

bandwidth, unreliable tactical radio links, which require
specialized support from transport protocols.

The primary goal of a transport protocol in the
airborne networking context is to maximize the timeliness
of delivery of data to the information space and to clients,
while minimizing the overhead in providing this delivery
capability. In addition to being efficient, the transport
protocol should provide reliable and/or sequenced delivery
of data, as required by the semantics of the
communication. Moreover, the transport capability should
support tight integration with other components that are
managing the information dissemination. Information and
statistics available at the transport layer should be exposed
to the information management system and client runtime
system. The transport layer should also provide flexible
control interfaces to allow the other components to
customize the behavior and operation of the transport
layer. For example, the transport layer should allow
readjustment of priorities of messages, and creation of
multiple streams for traffic differentiation.

THE MOCKETS COMMUNICATION LIBRARY

Mockets (mobile sockets) is a communication library
specifically designed to improve communications in
MANET environments [1]. Mockets offers several
delivery services and applications can choose
independently among reliable or unreliable, sequenced or
unsequenced delivery of data. Different delivery services
can coexist in the same connection.

Another feature of Mockets is the network condition
monitoring component [4]. This component makes the
current network state available to the application. The
network condition is measured in terms of available
bandwidth along the communication path, round trip time,
packet loss rate, and peer reachability. This allows an
application using Mockets to adapt to changes in the
metwork environment by tuning several communication
parameters. Applications can dynamically change the
priority and maximum lifetime of messages. They can also
set an enqueue timeout for the insertion of messages in the
transmission queue and a retry timeout that specifies for
how long a message will be retransmitted before being
discarded. Applications can tune the parameters for each
message or for a specific flow of messages.

Mockets also supports message tagging, cancellation,
and replacement. By tagging messages, applications can
separate message flows and perform group operations on a
specific type of messages. Tagging messages also allows
applications to use the functionalities of message
cancellation and replacement. An application that faces a

congested network situation or limited bandwidth can
decide to cancel all the messages of a specific type. A call
to cancel will cause all the messages marked with the
specified tag to be deleted from the transmit queues. The
message replacement functionality consists of a cancel
followed by a new send. This capability allows
applications to deliver only the most recent update of a
specific flow. When a new message is available, using the
replacement will cause the messages marked with a
specific tag to be deleted from the transmit queues and the
new message to be enqueued. This technique reduces the
message latency by dropping the transmission rate.
Message replacement was identified as the feature that
would most benefit applications with timeliness
constraints in the JBI system.

In addition, in recent months the Air Force Research
Laboratory (AFRL) has developed a reference set of
Information Management (IM) Services that will provide
an essential piece of the envisioned final Net-Centric IM
solution for the Department of Defense (DoD). The IM
Services will provide mission critical functionality to
enable seamless interoperability between existing and
future DoD systems and services while maintaining a
highly available IM capability across the wide spectrum of
differing scalability and performance requirements. The
services developed using the Phoenix architecture will
provide capabilities for information submission,
information brokering and discovery, repository, query,
type management, dissemination, session management,
authorization, service brokering, and event notification
[5]. In addition, the IM services support common
information models that facilitate the management and
dissemination of information consistent with client needs
and established policy. The services support flexible and
extensible definitions of session, service, and channel
contexts that enable the application of Quality of Service
(QoS) and security policies at many levels within the
SOA.

The Phoenix architecture provides information and
byte channels for the transmission of all information
between and among clients and services. In addition, a
channel context is associated with each channel in order to
enable control and policy enforcement components to both
instrument and affect channel behaviors dynamically. In
the current implementation the Mockets library has been
used as one of the underlying enabling byte channel
technologies. By simply setting appropriate channel
context attributes the underlying Mockets library can be
used to choose among reliable or unreliable, sequenced or
unsequenced delivery of information. In addition, context
attributes may be changed to impact information delivery

2

3 of 8

priority and information replacement based on QoS or
other mission priorities and policies.

QUALITATIVE ANALYSIS

We identified a variety of technologies which might
be suitable for use in the JBI context.

• UDP/TCP (User Datagram Protocol and
Transmission Control Protocol)

• SCTP (Stream Control Transmission Protocol)
• RUDP (Reliable UDP)
• DCCP (Datagram Congestion Control Protocol)
• SCPS-TP (Space Communications Protocol

Standards – Transport Protocol)
• Mockets communication library
• DDS (Data Distribution Service)
• JMS (Java Message Service)

These technologies can be divided into transport

protocols and publish/subscribe middleware.

Transport Protocols:

UDP and TCP are core protocols of the Internet
Protocol suite. UDP offers an unreliable, unsequenced
delivery that does not meet the basic requirements of JBI.
TCP instead offers a reliable, in-sequence delivery, but
was designed for fully connected wired infrastructure
environments and exhibits several weaknesses in wireless,
low bandwidth, intermittently connected environments.

SCTP [6] is a transport layer protocol developed to
improve and add functionalities to TCP. SCTP ensures
reliable, in-sequence transport of messages with
congestion control (like TCP). However message ordering
is optional, the user application can process messages in
the order they are received. SCTP supports multiple
streams of messages. Streams can be exploited, for
example, to accord higher priority to control messages
over data messages, however inter-stream priority is
currently not a standard feature. SCTP also offers a path
selection-and-monitoring feature that allows selecting a
“primary” data transmission path and testing the
connectivity of the transmission path.

RUDP extends UDP by adding acknowledgments and
retransmission of lost packets, windowing and congestion
control. It offers a reliable, in-order delivery [7]. RUDP's
congestion control mechanisms allow streams to behave in
a TCP-friendly fashion without disturbing the real-time
nature of the protocol. Even though RUDP offers a reliable
delivery it does not support advanced features like

prioritizing messages and multiple streams that are
required for JBI.

DCCP is a message-oriented transport layer protocol.
It implements reliable connection setup and teardown as
well as several congestion control mechanisms [8]. The
protocol provides optional mechanisms to allow an
application to set the reliability of the transmission
according to its needs. DCCP can tell the sender
application with high reliability as to which data packets
reached the receiver and whether these packets were
corrupted, or dropped in the receive buffer. However
reliability has to be implemented on top of DCCP, it is not
included in the protocol. This communication protocol is
suitable for applications that can benefit from control over
the tradeoff between timeliness and reliability but
reliability is a requirement for the applications we are
focusing on in this discussion.

SCPS is a protocol suite designed to support
communications over challenging environments. We
focused on SCPS-TP, an underlying transport protocol
optimized to provide reliable end-to-end delivery of
messages between hosts communicating through a satellite
link. This protocol was designed to meet the needs of
satellite communications but it has been proven to work
well also for mobile/wireless and tactical communications
[9]. SCPS-TP offers reliable delivery (complete, correct, in
sequence, with no duplications), a best effort delivery
(correct, in sequence, no duplications, possibly with gaps)
and a delivery with a minimal reliability (correct, possibly
incomplete, possibly out of sequence). SCPS also supports
message priorities.

As already described, the Mockets library is a
communication library specifically designed to improve
communications in wireless networking scenarios.
Mockets provide several delivery services with different
communication semantics: reliable/unreliable,
sequenced/unsequenced. Mockets allows applications to
perform semantic classification of data, cancellation and
replacement of enqueued data. It also supplies several fine-
tuning mechanisms like message priority and timeouts.
Mockets also provides a network monitoring component
that can assist applications in dynamically adapting to
changes in the communications infrastructure.

Publish/Subscribe Middleware:

DDS [10] is an implementation of a data-centric
publish/subscribe middleware for distributed systems.
DDS is implemented as a decentralized peer-to-peer
architecture that allows the user to specify QoS parameters
such as best effort or reliable and sequenced delivery of

3

4 of 8

data, priority of messages, and grouping of data (creating
multiple streams). It also allows monitoring the
connectivity.

JMS is a Java Message Oriented Middleware API for
sending messages between clients. JMS supports two
models: a point-to-point model where only one consumer
will get the message and then send back an
acknowledgement (reliable service) and a
publish/subscribe model. JMS enables distributed
communication that is loosely coupled, reliable, and
asynchronous [11].

From the qualitative examination we decided that the
transport protocols are more suitable as publish/subscribe
middleware does not seem to satisfy the specific
necessities of JBI. Publish/subscribe middleware might be
able to perform reliable service and prioritizing messages,
like in the case of DDS, but they are not meant to be used
for point-to-point communication. Moreover the effort to
adapt the middleware to the environment and get the
needed capabilities will reduce the middleware
performance. Among the transport protocols, we also ruled
out UDP and DCCP because they do not offer a reliable
service that is a prerequisite in the target environment. We
also ruled out also TCP because of its well-known
weaknesses when working in a wireless network. Finally,
RUDP was ruled out because it does not have a standard
implementation and it does not offer the required
capabilities of prioritization and multiple streams.

Table 1 specifies various characteristics of transport
protocols, some of which are necessary to meet the
requirements of the JBI environment and others that are
useful to improve performance. The table summarizes the
features available for each of the technologies.

Table 1: Transport Protocols and their Features

 UDP TCP SCTP DCCP RUDP SCPS‐TP Mockets

Reliable
transport
Ordered
delivery
Unordered
delivery
Congestion
control
Multiple
streams

Priority
Connection
monitoring

QUANTITATIVE ANALYSIS

Following the qualitative downselect, we decided to
perform a quantitative evaluation to compare the surviving
technologies: SCTP, SCPS-TP and Mockets. The
experimental evaluation consists of four tests all designed
to evaluate the timeliness of information delivery.

The experiments performed simulate a scenario
involving blue force tracking with the JBI system. We
measure the timeliness of data delivery and highlight the
ability of Mockets to provide good performance in this
context, taking advantage of its unique message
replacement capability.

Experiment One

In the first test case, a client connects over a low-
bandwidth link to the JBI system that is disseminating blue
force tracking information for all the nodes that are in
theatre. This particular configuration assumes 20 nodes,
each generating an update message at a rate of 1 Hz. Each
message is assumed to be 1 KB in size. The JBI system
reflects these messages back to all the clients, which
requires a bandwidth of 20 KB/s between the JBI system
and each client.

The disadvantaged client, however, does not have a
20 Kb/s communications channel available. We limit the
bandwidth to 5 KB/s, which is usually the maximum
bandwidth available for a tactical radio link such as a
PRC-117a radio or a PSC-5 ground terminal. Due to the
limited link bandwidth the messages will accumulate in
the network queues because the system produces more
messages than it is able to send out. Messages residing in
the queues cause delay in the delivery. Moreover when the
queues are full messages are dropped and they have to be
retransmitted (due to reliable service) causing additional
traffic. We assume a queue of 4 packets (4 KB) in the
network card. In this test we can appreciate how the
message replacement function of Mockets is able to
replace packets that have not yet been sent, or are waiting
for acknowledgement, with a newer update as soon as this
is produced. This function allows the sender to reduce the
number of packets injected in the congested network and
allows the receiver to get the newer position update instead
of receiving all the updates with a considerable delay.

The congestion control of SCTP and SCPS-TP helps
reducing the sending rate, but this does not avoid the
problem of getting the updates with a considerable delay
since the rate at which the updates are produced does not
decrease and the bandwidth of the channel does not
increase overtime.

4

5 of 8

SCPS-TP offers several congestion control
mechanisms. We decided to perform the tests with the
standard mechanism (TCP Vegas style congestion control)
given that preliminary tests showed that the variation in
performance was negligible across the different
algorithms.

Figure 1 shows the result of the first experiment. The
latency is evaluated as the time elapsed from when the
sensor update was produced and when it is received from
the listening application.

Figure 1: Latency comparison between SCPS-TP, SCTP and
Mockets

The message replacement allows Mockets to
drastically reduce the sending rate by sending only the
most recent update while old messages waiting in queue
are cancelled. The average latency using Mockets is 528
ms whereas with SCPS-TP and SCTP we have an
unbounded growth in the latency. We can see how the
congestion control mechanism used by SCTP is very
aggressive, causing a drastic delay of the message delivery
since the sending rate of the application is not reduced.
Note that the performance of Mockets is represented by a
black line that is almost directly over the horizontal axis,
making it difficult to see.

Figure 2 is a close-up of Figure 1 showing the latency
for the first 100 messages sent. This chart highlights the
messages the client application actually received with
markers. This clearly shows that the performance
improvement achieved by Mockets are not due to a higher
throughput. Using Mockets the application sends 283
messages out of 1000 produced by the sensor, 25 out of
100. This result is reasonable given that the available
bandwidth is 5KB/s 25% of the producing rate, which is
20KB/s, and the amount of data sent using Mockets is
28.3% of the total generated data.

Figure 2: Latency comparison: close-up of the first 100 messages.

Experiment Two

In the second experiment, a second data stream,
consisting of sensor data, is introduced in addition to the
blue force tracking data. For simplicity, we assume the
sensor data stream also consists of 1 KB messages at an
average 20 Hz rate. The network bandwidth for the
disadvantaged client remains the same 5 KB/s as in the
first experiment. Given the two streams, the load on the
network will be heavier and the delay of each message will
be longer. This test evaluates the Mockets message
replacement working in combination with the message
tagging functionality in order to replace the right message
among several streams, maintaining a small, constant
delay for messages across different streams.

Figure 3 shows a close-up of the result of this
experiment, displaying the latency of the first 100
messages. The figure shows two data series for each
technology: one data series for each of the two streams,
identified as Type A and Type B. Using SCPS-TP and
SCTP, the latency of each message is about three times the
one measured in the first test. Message 100 of SCPS-TP
Type A has a latency of 63486 ms, about 2.7 times the
latency of message 100 of SCPS-TP in the first test which
is 22782 ms, similar proportions can be found throughout
the results. A rate of increase of about three times is
reasonable since the sending rate is double the one of the
first test and the queues are full so more messages get
dropped creating even more traffic since the messages are
delivered reliably and therefore each dropped message has
to be sent again.

With Mockets, different tags are assigned to messages
from stream A and from stream B, so that when a new
update is available, only messages of the same flow are
replaced. The average latency of messages sent using
Mockets is 488 ms for Type A and 118 ms for Type B.

5

6 of 8

The different latency is coupled with a different number of
messages delivered: 152 out a 1000 for Type A and 87 out
of 1000 for Type B. This behavior is explainable
considering that stream A (blue force tracking) starts first,
so the initial messages of Type A that fill the queue are
more likely to go through. Note that since fewer messages
of Type B are sent, the latency for this type of message is
lower.

Figure 3: Close-up of the latency of the first 100 messages when
sending two flows of position updates.

Experiment Three

In the third experiment, we introduce different
priorities for the different types of information sent over
the low bandwidth channel between the JBI system and the
disadvantaged client. We have position updates as before
for blue force tracking, and images from a sensor. As
described earlier, the position updates are frequent, small
messages of size 1 KB at a rate of 20 Hz. The images
sensor on the other hand produces updates of 5KB once
every 10 seconds. These sensor data messages are not
subject to replacement as every single message is
important. Hence, they are sent using a reliable,
unsequenced, high priority stream.

Figure 4 shows the results of the third experiment.
The series labeled Type A represents position update
messages, and Type B represents image updates from a
sensor. The average latency for Type A using Mockets is
773 ms, slightly higher than the latency with just position
updates. Also the latency of each message of Type A using
SCPS-TP and SCTP is slightly higher than in the first
experiment. Over the time to produce one thousand
position updates only six image updates has been
produced, so the overhead on the congested network is not

significant. Image updates, type B, suffer from little
latency since they are higher priority messages. The
latency for updates of Type B is 1661 ms using SCPS-TP,
1391 ms using SCTP and 3471 ms using Mockets. Note
that messages of Type B are also unsequenced, and the
higher latency using Mockets is due to message number 4
that got lost and arrived out of order, message 5 and 6
arrived before message 4.

Figure 4: Multiple types of flow from two different sensors

Experiment Four

To perform the fourth and last experiment we
simulated a link with a fluctuating bandwidth, normally at
40 KB/s but periodically dropping to 5 KB/s. The
bandwidth of the channel is 40 KB/s for 50 seconds then it
is reduced to 5 KB/s for 10 seconds. We assumed ten
nodes (instead of twenty), each generating the same 1 KB
position update at a rate of 1 Hz. In this configuration,
when the link bandwidth is 40 KB/sec, there is more than
adequate bandwidth for all the messages to be transmitted.
When the bandwidth drops the sending rate is double the
capacity of the channel.

Figure 5 shows clearly how the performance of
SCPS-TP and SCTP are quickly deteriorated even with a
small period of time of limited bandwidth, to the point
where SCTP could not recover from the small period of
limited bandwidth. On the other side the Mockets message
replacement starts to work immediately by replacing
stalled messages with newer updates and delivering them
with very little latency and is prompt to stop replacing
messages as soon as the bandwidth is restored.

6

7 of 8

This experiment has been performed five times, registering
an average latency 1012 ms using SCPS-TP, 10998 ms
using SCTP and 40 ms using Mockets.

Figure 5: Latency comparison with fluctuating bandwidth. First
run of experiment four.

Discussion

The issues that applications with liveliness constraints
face are not only due to the delay of the single message,
but also due to the fact that when a new update is
available, older updates become stale. Using the Mockets
message replacement, we sacrifice completeness in order
to have prompt delivery of newer updates. The message
stream is reliable, sequenced because the application is
always interested in at least the most recent message.
Using other technologies we could obtain a more timely
distribution with unreliable delivery given that reliable, in-
order delivery combined with congestion control creates
considerable traffic and therefore considerable delay. An
unreliable flow would help in delivering with less delay
but would not ensure the liveliness of data, i.e. messages
would have less delay but a newer update that overrides
old messages may be available but lost in transmission.
Also consider this example: an application sends updates
at irregular intervals of time: it sends M1 at time t1, M2 at
time t2 and M3 at time t3. The interval between t1, t2 and t3
happens to be very long and M2 is lost. If we are using
unreliable delivery the receiver application would have as
last update M1 for a long time, until M3 is received (t3-t1),
while a newer update was available but has not been
delivered, the information M1 is out of date from t2 to t3.
What Mockets achieves with message replacement is
replacing a message only when a newer one is available.
The newest message is delivered reliably so if it gets lost it
is resent until it is successfully delivered or until a newer
update comes available. Note how this mechanism reduces
the sending rate and the load on the congested network
while maintaining liveliness and timeliness of data.

Experimental Setup Details

The tests have been performed using the most recent
release of Mockets as of April 2009, SCPS Reference
Implementation 1.1.13 software distribution, and the Linux
Kernel implementation of SCTP, version 1.0.9.

The experiments have been setup using two machines
in the case of Mockets and SCPS-TP. These machines run
Fedora Core 4 Linux. The machines are connected through
a hub and both run NIST Net to emulate a low bandwidth
radio link typical of the JBI system. For the SCTP tests we
used two machines running Ubuntu 8.0.4 since this
distribution includes a pre-packaged distribution of the
Linux Kernel SCTP library in its repositories. The two
machines were connected through a hub to a third machine
emulating the low bandwidth connection using NIST Net.
Two features of NIST Net have been used: the bandwidth
limitation and the queue depth. When bandwidth limitation
is used it causes packets to be queued. By default, NIST
Net sets the queue depth to an infinite value which is not
realistic. For our tests we set the queue depth to 4 packets,
4 KB in the case of 1KB packets, to simulate the queue
length of a typical network card.

CONCLUSIONS

The message replacement capability of Mockets
offers a clever way to enhance liveliness of messages and
prompt delivery. Applications sending a flow of messages
with time delivery constraint in a low bandwidth or
congested network are the ones that benefit most from
Mockets message replacement. Reliable delivery coupled
with message replacement ensures the liveliness of data.
Using the Mockets message replacement completeness of
the information is sacrificed in order to achieve timeliness
in delivery. In a situation with limited bandwidth, Mockets
has a lower throughput than other technologies but the
reduced amount of messages to be sent over the network,
and selective cancellation of old messages from queues,
allows Mockets to achieve good performance by
delivering the most recent data in a timely fashion.

ACKNOWLEDGEMENTS

This work is supported in part by the U.S. Army
Research Laboratory under Cooperative Agreement
W911NF-04-2-0013, by the U.S. Army Research
Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-2-0009,
and by the Air Force Research Laboratory under
Cooperative Agreement FA8750-06-2-0064.

7

8 of 8

REFERENCES

[1] Infospherics Web Site. Online reference:
http://www.infospherics.org.

[2] M. Linderman, et. al., A Reference Model for
Information Management to Support Coalition
Information Sharing Needs, In Proceedings of 10th
International Command and Control Research and
Technology Symposium, 2005
http://www.dodccrp.org/events/
10th_ICCRTS/CD/papers/274.pdf.

[3] N. Suri, M. Tortonesi, M. Arguedas, M. Breedy, M.
Carvalho, R. Winkler, Mockets: A Comprehensive
Application-Level Communications Library, in
Proceedings of 24th Military Communications
Conference (MILCOM 2005), Atlantic City, NJ,
USA, October 2005.

[4] C. Stefanelli, M. Tortonesi, M. Carvalho, N. Suri,
Network Conditions Monitoring In The Mockets
Communication Framework, in Proceedings of 26th

Military Communications Conference (MILCOM
2007), Orlando, FL, USA.

[5] R. Grant, V. Combs, J. Hanna, B. Lipa, J. Reilly,
Phoenix: SOA based information management
services, Proceedings of SPIE, Defense, Security, and
Sensing, April 2009, Orlando, FL, USA

[6] R. Stewart, Q. Xie et. al., Stream Control
Transmission Protocol RFC 2960, October 2000.

[7] D. Velten, R. Hinden, J. Sax, Reliable Data Protocol
RFC 908, July 1984.

[8] E. Kohler, M. Handley, S. Floyd, Datagram
Congestion Control Protocol (DCCP) RFC 4340,
March 2006.

[9] R. C. Durst, G. J. Miller, E. J. Travis, TCP extensions
for space communications, in MobiCom 1996, Rye,
New York, USA.

[10] Object Management Group (OMG), Data
Distribution Service for Real-time Systems, v1.2,
January 2007.

[11] Sun Microsystems, Java Message Service
Specification - version 1.1, March 2002.

8

http://www.infospherics.org
http://www.dodccrp.org/events/

