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ABSTRACT 

Network centric warfare relies on the timely and 
reliable delivery of data to disparate cooperating nodes in 
tactical networking environments. Given the limited 
bandwidth available and the unreliability of network links, 
data often accumulates in application and/or network 
queues, resulting in increased latency in the delivery of the 
data. The Mockets communications library addresses this 
problem via dynamic message replacement. The message 
replacement functionality of Mockets allows the system to 
drop all but the most recent message within a specific 
message flow by removing older, outdated messages from 
the queues. This paper describes and evaluates, in the 
context of the U.S. Air Force's Joint Battlespace 
Infosphere (JBI) system, the timeliness of end-to-end 
delivery of data using the Mockets library. 

In addition to dynamic message replacement, other 
capabilities in the Mockets library include options for 
reliable vs. unreliable and sequenced vs. unsequenced 
delivery of data, detailed statistics and feedback regarding 
the connection, and assignment and dynamic adjustment of 
priorities of messages. This paper provides a qualitative 
analysis of these different capabilities and their suitability 
to address the transport requirements in JBI. It also 
provides a quantitative comparison of Mockets with SCTP 
and SCPS-TP, which are similar technologies with 
existing available candidate implementations. Our results 
show that the Mockets library with the message 
replacement significantly outperforms these other 
transport protocols. 

INTRODUCTION 

Tactical networking environments are often 
characterized by limited bandwidth and unreliable 
connectivity due to their wireless ad-hoc nature. 
Nevertheless these environments must still support 
applications with potentially massive data exchange 
requirements. 

Our analysis focuses on the context of the U.S. Air 
Force’s Joint Battlespace Infosphere (JBI) in order to find 
a transport protocol that supports transmission and 
reception of data between clients and servers and provides 

advanced functionalities to be exploited by the infosphere. 
In this analysis the main aim of the transport protocol is to 
maximize the timeliness of the delivery of information, as 
well as providing advanced capabilities such as supporting 
different types of flow, integrating with other components, 
and controlling the communication in a flexible manner. 

In the JBI system, several applications have timing 
constraints on the delivery of data. Information may 
become stale after some amount of time. Additionally, 
some old messages become irrelevant when a newer 
message becomes available. Message replacement allows 
newer information to be delivered quickly, by removing 
old messages from the transmission queue that are either 
waiting to be sent or are awaiting retransmission if not 
acknowledged. 

Our evaluation consisted of identifying the most 
suitable transport technologies to support JBI applications 
with timeliness constraints followed by a quantitative 
comparison of those technologies. 

In our quantitative analysis we have considered 
several types of applications in different network 
environments. A series of tests has been performed 
analyzing applications involving both single and multiple 
information producers and also including several different 
types of information with different delivery requirements. 
During the experimentation we simulated two different 
environments: a low bandwidth channel and a channel 
with fluctuating bandwidth. 

JBI AND THE REQUIREMENTS OF THIS 
CONTEXT 

JBI is an information management architecture that 
supports efficient publish, subscribe, and query of 
information [1] [1]. JBI was initially targeted towards 
enterprise networks such as those present at Air 
Operations Centers and other upper echelons, but has since 
been extended to support airborne networking 
environments. In the context of enterprise networks, JBI 
uses Java Remote Method Invocation (RMI) and the Java 
Messaging Service as transport protocols. However, the 
airborne networking environment introduces low-

1
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bandwidth, unreliable tactical radio links, which require 
specialized support from transport protocols. 

The primary goal of a transport protocol in the 
airborne networking context is to maximize the timeliness 
of delivery of data to the information space and to clients, 
while minimizing the overhead in providing this delivery 
capability. In addition to being efficient, the transport 
protocol should provide reliable and/or sequenced delivery 
of data, as required by the semantics of the 
communication. Moreover, the transport capability should 
support tight integration with other components that are 
managing the information dissemination. Information and 
statistics available at the transport layer should be exposed 
to the information management system and client runtime 
system. The transport layer should also provide flexible 
control interfaces to allow the other components to 
customize the behavior and operation of the transport 
layer. For example, the transport layer should allow 
readjustment of priorities of messages, and creation of 
multiple streams for traffic differentiation. 

THE MOCKETS COMMUNICATION LIBRARY 

Mockets (mobile sockets) is a communication library 
specifically designed to improve communications in 
MANET environments [1]. Mockets offers several 
delivery services and applications can choose 
independently among reliable or unreliable, sequenced or 
unsequenced delivery of data. Different delivery services 
can coexist in the same connection. 

Another feature of Mockets is the network condition 
monitoring component [4]. This component makes the 
current network state available to the application. The 
network condition is measured in terms of available 
bandwidth along the communication path, round trip time, 
packet loss rate, and peer reachability. This allows an 
application using Mockets to adapt to changes in the 
metwork environment by tuning several communication 
parameters. Applications can dynamically change the 
priority and maximum lifetime of messages. They can also 
set an enqueue timeout for the insertion of messages in the 
transmission queue and a retry timeout that specifies for 
how long a message will be retransmitted before being 
discarded. Applications can tune the parameters for each 
message or for a specific flow of messages. 

Mockets also supports message tagging, cancellation, 
and replacement. By tagging messages, applications can 
separate message flows and perform group operations on a 
specific type of messages. Tagging messages also allows 
applications to use the functionalities of message 
cancellation and replacement. An application that faces a 

congested network situation or limited bandwidth can 
decide to cancel all the messages of a specific type. A call 
to cancel will cause all the messages marked with the 
specified tag to be deleted from the transmit queues. The 
message replacement functionality consists of a cancel 
followed by a new send. This capability allows 
applications to deliver only the most recent update of a 
specific flow. When a new message is available, using the 
replacement will cause the messages marked with a 
specific tag to be deleted from the transmit queues and the 
new message to be enqueued. This technique reduces the 
message latency by dropping the transmission rate. 
Message replacement was identified as the feature that 
would most benefit applications with timeliness 
constraints in the JBI system. 

In addition, in recent months the Air Force Research 
Laboratory (AFRL) has developed a reference set of 
Information Management (IM) Services that will provide 
an essential piece of the envisioned final Net-Centric IM 
solution for the Department of Defense (DoD). The IM 
Services will provide mission critical functionality to 
enable  seamless interoperability between existing and 
future DoD systems and services while maintaining a 
highly available IM capability across the wide spectrum of 
differing scalability and performance requirements. The 
services developed using the Phoenix architecture will 
provide capabilities for information submission, 
information brokering and discovery, repository, query, 
type management, dissemination, session management, 
authorization, service brokering, and event notification 
[5]. In addition, the IM services support common 
information models that facilitate the management and 
dissemination of information consistent with client needs 
and established policy. The services support flexible and 
extensible definitions of session, service, and channel 
contexts that enable the application of Quality of Service 
(QoS) and security policies at many levels within the 
SOA. 

The Phoenix architecture provides information and 
byte channels for the transmission of all information 
between and among clients and services. In addition, a 
channel context is associated with each channel in order to 
enable control and policy enforcement components to both 
instrument and affect channel behaviors dynamically. In 
the current implementation the Mockets library has been 
used as one of the underlying enabling byte channel 
technologies. By simply setting appropriate channel 
context attributes the underlying Mockets library can be 
used to choose among reliable or unreliable, sequenced or 
unsequenced delivery of information.  In addition, context 
attributes may be changed to impact information delivery 
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priority and information replacement based on QoS or 
other mission priorities and policies.  

QUALITATIVE ANALYSIS 

We identified a variety of technologies which might 
be suitable for use in the JBI context. 

• UDP/TCP (User Datagram Protocol and 
Transmission Control Protocol) 

• SCTP (Stream Control Transmission Protocol) 
• RUDP (Reliable UDP) 
• DCCP (Datagram Congestion Control Protocol) 
• SCPS-TP (Space Communications Protocol 

Standards – Transport Protocol) 
• Mockets communication library 
• DDS (Data Distribution Service) 
• JMS (Java Message Service) 

 
These technologies can be divided into transport 

protocols and publish/subscribe middleware. 

Transport Protocols: 

UDP and TCP are core protocols of the Internet 
Protocol suite. UDP offers an unreliable, unsequenced 
delivery that does not meet the basic requirements of JBI. 
TCP instead offers a reliable, in-sequence delivery, but 
was designed for fully connected wired infrastructure 
environments and exhibits several weaknesses in wireless, 
low bandwidth, intermittently connected environments.  

SCTP [6] is a transport layer protocol developed to 
improve and add functionalities to TCP. SCTP ensures 
reliable, in-sequence transport of messages with 
congestion control (like TCP). However message ordering 
is optional, the user application can process messages in 
the order they are received. SCTP supports multiple 
streams of messages. Streams can be exploited, for 
example, to accord higher priority to control messages 
over data messages, however inter-stream priority is 
currently not a standard feature. SCTP also offers a path 
selection-and-monitoring feature that allows selecting a 
“primary” data transmission path and testing the 
connectivity of the transmission path. 

RUDP extends UDP by adding acknowledgments and 
retransmission of lost packets, windowing and congestion 
control. It offers a reliable, in-order delivery [7]. RUDP's 
congestion control mechanisms allow streams to behave in 
a TCP-friendly fashion without disturbing the real-time 
nature of the protocol. Even though RUDP offers a reliable 
delivery it does not support advanced features like 

prioritizing messages and multiple streams that are 
required for JBI. 

DCCP is a message-oriented transport layer protocol. 
It implements reliable connection setup and teardown as 
well as several congestion control mechanisms [8]. The 
protocol provides optional mechanisms to allow an 
application to set the reliability of the transmission 
according to its needs. DCCP can tell the sender 
application with high reliability as to which data packets 
reached the receiver and whether these packets were 
corrupted, or dropped in the receive buffer. However 
reliability has to be implemented on top of DCCP, it is not 
included in the protocol. This communication protocol is 
suitable for applications that can benefit from control over 
the tradeoff between timeliness and reliability but 
reliability is a requirement for the applications we are 
focusing on in this discussion. 

SCPS is a protocol suite designed to support 
communications over challenging environments. We 
focused on SCPS-TP, an underlying transport protocol 
optimized to provide reliable end-to-end delivery of 
messages between hosts communicating through a satellite 
link. This protocol was designed to meet the needs of 
satellite communications but it has been proven to work 
well also for mobile/wireless and tactical communications 
[9]. SCPS-TP offers reliable delivery (complete, correct, in 
sequence, with no duplications), a best effort delivery 
(correct, in sequence, no duplications, possibly with gaps) 
and a delivery with a minimal reliability (correct, possibly 
incomplete, possibly out of sequence). SCPS also supports 
message priorities. 

As already described, the Mockets library is a 
communication library specifically designed to improve 
communications in wireless networking scenarios. 
Mockets provide several delivery services with different 
communication semantics: reliable/unreliable, 
sequenced/unsequenced. Mockets allows applications to 
perform semantic classification of data, cancellation and 
replacement of enqueued data. It also supplies several fine-
tuning mechanisms like message priority and timeouts. 
Mockets also provides a network monitoring component 
that can assist applications in dynamically adapting to 
changes in the communications infrastructure. 

Publish/Subscribe Middleware: 

DDS [10] is an implementation of a data-centric 
publish/subscribe middleware for distributed systems. 
DDS is implemented as a decentralized peer-to-peer 
architecture that allows the user to specify QoS parameters 
such as best effort or reliable and sequenced delivery of 
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data, priority of messages, and grouping of data (creating 
multiple streams). It also allows monitoring the 
connectivity. 

JMS is a Java Message Oriented Middleware API for 
sending messages between clients. JMS supports two 
models: a point-to-point model where only one consumer 
will get the message and then send back an 
acknowledgement (reliable service) and a 
publish/subscribe model. JMS enables distributed 
communication that is loosely coupled, reliable, and 
asynchronous [11]. 

From the qualitative examination we decided that the 
transport protocols are more suitable as publish/subscribe 
middleware does not seem to satisfy the specific 
necessities of JBI. Publish/subscribe middleware might be 
able to perform reliable service and prioritizing messages, 
like in the case of DDS, but they are not meant to be used 
for point-to-point communication. Moreover the effort to 
adapt the middleware to the environment and get the 
needed capabilities will reduce the middleware 
performance. Among the transport protocols, we also ruled 
out UDP and DCCP because they do not offer a reliable 
service that is a prerequisite in the target environment. We 
also ruled out also TCP because of its well-known 
weaknesses when working in a wireless network. Finally, 
RUDP was ruled out because it does not have a standard 
implementation and it does not offer the required 
capabilities of prioritization and multiple streams. 

Table 1 specifies various characteristics of transport 
protocols, some of which are necessary to meet the 
requirements of the JBI environment and others that are 
useful to improve performance. The table summarizes the 
features available for each of the technologies. 

Table 1: Transport Protocols and their Features 

 UDP  TCP  SCTP  DCCP  RUDP  SCPS‐TP  Mockets 

Reliable 
transport         
Ordered 
delivery         
Unordered 
delivery         
Congestion 
control         
Multiple 
streams         

Priority         
Connection 
monitoring         
 

QUANTITATIVE ANALYSIS 

Following the qualitative downselect, we decided to 
perform a quantitative evaluation to compare the surviving 
technologies: SCTP, SCPS-TP and Mockets. The 
experimental evaluation consists of four tests all designed 
to evaluate the timeliness of information delivery. 

The experiments performed simulate a scenario 
involving blue force tracking with the JBI system. We 
measure the timeliness of data delivery and highlight the 
ability of Mockets to provide good performance in this 
context, taking advantage of its unique message 
replacement capability. 

Experiment One 

In the first test case, a client connects over a low-
bandwidth link to the JBI system that is disseminating blue 
force tracking information for all the nodes that are in 
theatre. This particular configuration assumes 20 nodes, 
each generating an update message at a rate of 1 Hz. Each 
message is assumed to be 1 KB in size. The JBI system 
reflects these messages back to all the clients, which 
requires a bandwidth of 20 KB/s between the JBI system 
and each client.  

The disadvantaged client, however, does not have a 
20 Kb/s communications channel available. We limit the 
bandwidth to 5 KB/s, which is usually the maximum 
bandwidth available for a tactical radio link such as a 
PRC-117a radio or a PSC-5 ground terminal. Due to the 
limited link bandwidth the messages will accumulate in 
the network queues because the system produces more 
messages than it is able to send out. Messages residing in 
the queues cause delay in the delivery. Moreover when the 
queues are full messages are dropped and they have to be 
retransmitted (due to reliable service) causing additional 
traffic. We assume a queue of 4 packets (4 KB) in the 
network card. In this test we can appreciate how the 
message replacement function of Mockets is able to 
replace packets that have not yet been sent, or are waiting 
for acknowledgement, with a newer update as soon as this 
is produced. This function allows the sender to reduce the 
number of packets injected in the congested network and 
allows the receiver to get the newer position update instead 
of receiving all the updates with a considerable delay. 

The congestion control of SCTP and SCPS-TP helps 
reducing the sending rate, but this does not avoid the 
problem of getting the updates with a considerable delay 
since the rate at which the updates are produced does not 
decrease and the bandwidth of the channel does not 
increase overtime. 
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SCPS-TP offers several congestion control 
mechanisms. We decided to perform the tests with the 
standard mechanism (TCP Vegas style congestion control) 
given that preliminary tests showed that the variation in 
performance was negligible across the different 
algorithms. 

Figure 1 shows the result of the first experiment. The 
latency is evaluated as the time elapsed from when the 
sensor update was produced and when it is received from 
the listening application. 

 

Figure 1: Latency comparison between SCPS-TP, SCTP and 
Mockets 

The message replacement allows Mockets to 
drastically reduce the sending rate by sending only the 
most recent update while old messages waiting in queue 
are cancelled. The average latency using Mockets is 528 
ms whereas with SCPS-TP and SCTP we have an 
unbounded growth in the latency. We can see how the 
congestion control mechanism used by SCTP is very 
aggressive, causing a drastic delay of the message delivery 
since the sending rate of the application is not reduced. 
Note that the performance of Mockets is represented by a 
black line that is almost directly over the horizontal axis, 
making it difficult to see. 

Figure 2 is a close-up of Figure 1 showing the latency 
for the first 100 messages sent. This chart highlights the 
messages the client application actually received with 
markers. This clearly shows that the performance 
improvement achieved by Mockets are not due to a higher 
throughput. Using Mockets the application sends 283 
messages out of 1000 produced by the sensor, 25 out of 
100. This result is reasonable given that the available 
bandwidth is 5KB/s 25% of the producing rate, which is 
20KB/s, and the amount of data sent using Mockets is 
28.3% of the total generated data. 

 

Figure 2: Latency comparison: close-up of the first 100 messages.  

Experiment Two 

In the second experiment, a second data stream, 
consisting of sensor data, is introduced in addition to the 
blue force tracking data. For simplicity, we assume the 
sensor data stream also consists of 1 KB messages at an 
average 20 Hz rate. The network bandwidth for the 
disadvantaged client remains the same 5 KB/s as in the 
first experiment. Given the two streams, the load on the 
network will be heavier and the delay of each message will 
be longer. This test evaluates the Mockets message 
replacement working in combination with the message 
tagging functionality in order to replace the right message 
among several streams, maintaining a small, constant 
delay for messages across different streams. 

Figure 3 shows a close-up of the result of this 
experiment, displaying the latency of the first 100 
messages. The figure shows two data series for each 
technology: one data series for each of the two streams, 
identified as Type A and Type B. Using SCPS-TP and 
SCTP, the latency of each message is about three times the 
one measured in the first test. Message 100 of SCPS-TP 
Type A has a latency of 63486 ms, about 2.7 times the 
latency of message 100 of SCPS-TP in the first test which 
is 22782 ms, similar proportions can be found throughout 
the results. A rate of increase of about three times is 
reasonable since the sending rate is double the one of the 
first test and the queues are full so more messages get 
dropped creating even more traffic since the messages are 
delivered reliably and therefore each dropped message has 
to be sent again. 

With Mockets, different tags are assigned to messages 
from stream A and from stream B, so that when a new 
update is available, only messages of the same flow are 
replaced. The average latency of messages sent using 
Mockets is 488 ms for Type A and 118 ms for Type B. 
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The different latency is coupled with a different number of 
messages delivered: 152 out a 1000 for Type A and 87 out 
of 1000 for Type B. This behavior is explainable 
considering that stream A (blue force tracking) starts first, 
so the initial messages of Type A that fill the queue are 
more likely to go through. Note that since fewer messages 
of Type B are sent, the latency for this type of message is 
lower. 

 

Figure 3:  Close-up of the latency of the first 100 messages when 
sending two flows of position updates. 

Experiment Three 

In the third experiment, we introduce different 
priorities for the different types of information sent over 
the low bandwidth channel between the JBI system and the 
disadvantaged client. We have position updates as before 
for blue force tracking, and images from a sensor. As 
described earlier, the position updates are frequent, small 
messages of size 1 KB at a rate of 20 Hz. The images 
sensor on the other hand produces updates of 5KB once 
every 10 seconds. These sensor data messages are not 
subject to replacement as every single message is 
important. Hence, they are sent using a reliable, 
unsequenced, high priority stream. 

Figure 4 shows the results of the third experiment. 
The series labeled Type A represents position update 
messages, and Type B represents image updates from a 
sensor. The average latency for Type A using Mockets is 
773 ms, slightly higher than the latency with just position 
updates. Also the latency of each message of Type A using 
SCPS-TP and SCTP is slightly higher than in the first 
experiment. Over the time to produce one thousand 
position updates only six image updates has been 
produced, so the overhead on the congested network is not 

significant. Image updates, type B, suffer from little 
latency since they are higher priority messages. The 
latency for updates of Type B is 1661 ms using SCPS-TP, 
1391 ms using SCTP and 3471 ms using Mockets. Note 
that messages of Type B are also unsequenced, and the 
higher latency using Mockets is due to message number 4 
that got lost and arrived out of order, message 5 and 6 
arrived before message 4. 

 

Figure 4: Multiple types of flow from two different sensors 

Experiment Four 

To perform the fourth and last experiment we 
simulated a link with a fluctuating bandwidth, normally at 
40 KB/s but periodically dropping to 5 KB/s. The 
bandwidth of the channel is 40 KB/s for 50 seconds then it 
is reduced to 5 KB/s for 10 seconds. We assumed ten 
nodes (instead of twenty), each generating the same 1 KB 
position update at a rate of 1 Hz. In this configuration, 
when the link bandwidth is 40 KB/sec, there is more than 
adequate bandwidth for all the messages to be transmitted. 
When the bandwidth drops the sending rate is double the 
capacity of the channel. 

Figure 5 shows clearly how the performance of 
SCPS-TP and SCTP are quickly deteriorated even with a 
small period of time of limited bandwidth, to the point 
where SCTP could not recover from the small period of 
limited bandwidth. On the other side the Mockets message 
replacement starts to work immediately by replacing 
stalled messages with newer updates and delivering them 
with very little latency and is prompt to stop replacing 
messages as soon as the bandwidth is restored. 
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This experiment has been performed five times, registering 
an average latency 1012 ms using SCPS-TP, 10998 ms 
using SCTP and 40 ms using Mockets. 

 

Figure 5: Latency comparison with fluctuating bandwidth. First 
run of experiment four. 

Discussion 

The issues that applications with liveliness constraints 
face are not only due to the delay of the single message, 
but also due to the fact that when a new update is 
available, older updates become stale. Using the Mockets 
message replacement, we sacrifice completeness in order 
to have prompt delivery of newer updates. The message 
stream is reliable, sequenced because the application is 
always interested in at least the most recent message. 
Using other technologies we could obtain a more timely 
distribution with unreliable delivery given that reliable, in-
order delivery combined with congestion control creates 
considerable traffic and therefore considerable delay. An 
unreliable flow would help in delivering with less delay 
but would not ensure the liveliness of data, i.e. messages 
would have less delay but a newer update that overrides 
old messages may be available but lost in transmission. 
Also consider this example: an application sends updates 
at irregular intervals of time: it sends M1 at time t1, M2 at 
time t2 and M3 at time t3. The interval between t1, t2 and t3 
happens to be very long and M2 is lost. If we are using 
unreliable delivery the receiver application would have as 
last update M1 for a long time, until M3 is received (t3-t1), 
while a newer update was available but has not been 
delivered, the information M1 is out of date from t2 to t3. 
What Mockets achieves with message replacement is 
replacing a message only when a newer one is available. 
The newest message is delivered reliably so if it gets lost it 
is resent until it is successfully delivered or until a newer 
update comes available. Note how this mechanism reduces 
the sending rate and the load on the congested network 
while maintaining liveliness and timeliness of data. 

Experimental Setup Details 

The tests have been performed using the most recent 
release of Mockets as of April 2009, SCPS Reference 
Implementation 1.1.13 software distribution, and the Linux 
Kernel implementation of SCTP, version 1.0.9. 

The experiments have been setup using two machines 
in the case of Mockets and SCPS-TP. These machines run 
Fedora Core 4 Linux. The machines are connected through 
a hub and both run NIST Net to emulate a low bandwidth 
radio link typical of the JBI system. For the SCTP tests we 
used two machines running Ubuntu 8.0.4 since this 
distribution includes a pre-packaged distribution of the 
Linux Kernel SCTP library in its repositories. The two 
machines were connected through a hub to a third machine 
emulating the low bandwidth connection using NIST Net. 
Two features of NIST Net have been used: the bandwidth 
limitation and the queue depth. When bandwidth limitation 
is used it causes packets to be queued. By default, NIST 
Net sets the queue depth to an infinite value which is not 
realistic. For our tests we set the queue depth to 4 packets, 
4 KB in the case of 1KB packets, to simulate the queue 
length of a typical network card. 

CONCLUSIONS 

The message replacement capability of Mockets 
offers a clever way to enhance liveliness of messages and 
prompt delivery. Applications sending a flow of messages 
with time delivery constraint in a low bandwidth or 
congested network are the ones that benefit most from 
Mockets message replacement. Reliable delivery coupled 
with message replacement ensures the liveliness of data. 
Using the Mockets message replacement completeness of 
the information is sacrificed in order to achieve timeliness 
in delivery. In a situation with limited bandwidth, Mockets 
has a lower throughput than other technologies but the 
reduced amount of messages to be sent over the network, 
and selective cancellation of old messages from queues, 
allows Mockets to achieve good performance by 
delivering the most recent data in a timely fashion. 
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